Bài tập toán cao cấp 3 có lời giải

     

Cùng nắm kiến thức và kỹ năng trong Tập 3: Phép tính tích phân - định hướng chuỗi - Phương trình vi phân trải qua việc tò mò các câu chữ như tích phân bất định, tích phân xác định riemann, tích phân hàm các biến, kim chỉ nan chuỗi, phương trình vi phân, tư tưởng về phương trình vi phân đạo hàm riêng.


*

˜ ’ ˆ NGUYEN THUY THANH ` ˆ BAI TAP .

Bạn đang xem: Bài tập toán cao cấp 3 có lời giải

´ ´ ˆ TOAN CAO CAP Tˆp 3 a. ˜ ´ Ph´p t´ t´ phˆn. L´ thuyˆt chuˆ i. E ınh ıch a y e o Phu.o.ng tr` vi phˆn ınh a ´ ´ ’ ` ˆ ˆ ` ˆNHA XUAT BAN dai HOC QUOC GIA HA NOI . . .Muc luc . . ´.10 T´ phˆn bˆt d inc ıch a a 4 10.1 C´c phu.o.ng ph´p t´ t´ch phˆn . . . . . A a ınh ı a ....... 4 ´ 10.1.1 Nguyˆn h`m v` t´ch phˆn bˆt dinh ea aı aa. ....... 4 10.1.2 Phu.o.ng ph´p dˆi biˆn . . . . . . . ’´ aoe ....... 12 10.1.3 Phu.o.ng ph´p t´ phˆn t`.ng phˆn` a ıch a u a ....... 21 10.2 C´c l´.p h`m kha t´ trong l´.p c´c h`m so. Cˆp . . . . ´ ’ ıch ao a oaa a 30 10.2.1 T´ phˆn c´c h`m h˜.u ty . . . . . . . . . . . . U’ ıch a a a 30 10.2.2 T´ phˆn mˆt sˆ h`m vˆ ty do.n gian . . . . . .´ o’ ’ ıch a ooa 37 10.2.3 T´ phˆn c´c h`m lu.o.ng gi´c . . . . . . . . . . ıch a a a a 48 .11 T´ phˆn x´c d inc Riemann ıch a a 57 . ’ ıch 11.1 H`m kha t´ Riemann v` t´ch phˆn x´c d inch . . . A aı aa. .. 58 -. 11.1.1 Dinh ngh˜ . . . . . . . . . . . . . . . . . . ıa .. 58 -` ’ ’ı 11.1.2 Diˆu kiˆn dˆ h`m kha t´ch . . . . . . . . . . E e ea .. 59 . . Ban cua t´ch phˆn x´c dinh ´ 11.1.3 C´c t´ chˆt teo ’ ’ı a ınh a aa. .. 59 11.2 Phu.o.ng ph´p t´ t´ phˆn x´c d inc . . . . . . . A ınh ıch a a . .. 61 .ng dung cua t´ch phˆn x´c d inh . . . . . . .´ ’ı 11.3 Mˆt sˆ u o o´ aa. .. 78 . ’ ’ ’ 11.3.1 Diˆn t´ h` ph˘ng v` thˆ t´ch vˆt thˆ . . E ıch ınh a a eı a e .. 78 . . 11.3.2 T´ dˆ d`i cung v` diˆn t´ m˘t tr`n luân chuyển . . ınh o a a e ıch a o 89 . . . 11.4 T´ phˆn suy rˆng . . . . . . . . . . . . . . . . . . . . ıch a o 98 . 11.4.1 T´ phˆn suy rˆng cˆn vˆ han . . . . . . . . . 98 ıch a o a o. . . ’a 11.4.2 T´ phˆn suy rˆng cua h`m khˆng bi ch˘n . . 107 ıch a o o .a . .2 MUC LUC . . ´ ` 12 T´ phˆn h`m nhiˆu biˆn ıch a a e e 117 12.1 T´ phˆn 2-l´.p . . . . . . . . . . . . . . ıch a o . . . . . . . . 118 .`.ng ho.p miˆn ch˜. Nhˆt . . . ` 12.1.1 Tru o e ua . . . . . . . . 118 . . .`.ng ho.p miˆn cong . . . . . . ` 12.1.2 Tru o e . . . . . . . . 118 . .ng dung vào h` hoc 12.1.3 Mˆt v`i u o a´ ınh . . . . . . . . . 121 . . .p . . . . . . . . . . . . . . 12.2 T´ phˆn 3-l´ ıch a o . . . . . . . . 133 12.2.1 Tru.`.ng ho.p miˆn h`nh hˆp . . . `ı o e o . . . . . . . . 133 . . .`.ng ho.p miˆn cong . . . . . . ` 12.2.2 Tru o e . . . . . . . . 134 . 12.2.3 .................. . . . . . . . . 136 12.2.4 Nhˆn x´t phổ biến . . . . . . . . . . Ae . . . . . . . . 136 . 12.3 T´ phˆn d u.`.ng . . . . . . . . . . . . . O . . . . . . . . 144 ıch a 12.3.1 C´c dinh ngh˜a co. Ban . . . . . . ’ a. ı . . . . . . . . 144 .`.ng . . . . . . 12.3.2 T´ t´ phˆn du o ınh ıch a . . . . . . . . 146 12.4 T´ phˆn m˘t . . . . . . . . . . . . . . ıch a a . . . . . . . . 158 . 12.4.1 C´c dinh ngh˜a co. Ban . . . . . . ’ . . . . . . . . 158 a. ı 12.4.2 Phu.o.ng ph´p t´ t´ch phˆn m˘t a ınh ı a a . . . . . . . . 160 . .c Gauss-Ostrogradski . 12.4.3 Cˆng th´ o u . . . . . . . . 162 12.4.4 Cˆng th´.c Stokes . . . . . . . . . O u . . . . . . . . 162 ˜ ´ 13 L´ thuyˆt chuˆ i y e o 177 13.1 Chuˆ i sˆ du.o.ng . . . . . . . . . . . . . . . . . . . . . . ˜o o´ 178 13.1.1 C´c d.nh ngh˜a co. Ban . . . . . . . . . . . . . . ’ ai ı 178 .o.ng . . . . . . . . . . . . . . . . . . ˜o o´ 13.1.2 Chuˆ i sˆ du 179 ˜o. ´ ´ 13.2 Chuˆ i hˆi tu tuyˆt d ˆi v` hˆi tu khˆng tuyˆt d ˆi . . . O. E oao . O eo 191 . . . 13.2.1 C´c dinh ngh˜a co. Ban . . . . . . . . . . . . . . ’ a. ı 191 ˜ ´ ´ 13.2.2 Chuˆ i dan dˆu v` dˆu hiˆu Leibnitz . . . . . . O a aa e 192 . .a . . . . . . . . . . . . . . . . . . . . . . ˜u 13.3 Chuˆ i l˜y th` o u 199 13.3.1 C´c dinh ngh˜a co. Ban . . . . . . . . . . . . . . ’ a. ı 199 13.3.2 Diˆu kiˆn khai triˆn v` phu.o.ng ph´p khai triˆn -` ’ ’ e e ea a e 201 . ˜ 13.4 Chuˆ i Fourier . . . . . . . . . . . . . . . . . . . . . . . O 211 13.4.1 C´c d.nh ngh˜a co. Ban . . . . . . . . . . . . . . ’ ai ı 211MUC LUC 3 . . 13.4.2 Dˆu hiˆu du vˆ su. Hˆi tu cua chuˆ i Fourier . . . 212 ˜ ’`.o .’ ´ a e e o . .14 Phu.o.ng tr` vi phˆn ınh a 224 14.1 Phu.o.ng tr` vi phˆn cˆp 1 . . . . . . . . . . . . . . . 225 ´ ınh aa 14.1.1 Phu.o.ng tr` t´ch biˆn . . . . . . . . . . . . . . 226 ´ ınh a e .o.ng tr` d ang cˆp . . . .

Xem thêm: Học Giao Tiếp Với Người Nước Ngoài Tại Nhà, Just A Moment

. . . . . . . . . 231 ’ ´ 14.1.2 Phu ınh ˘ a 14.1.3 Phu.o.ng tr` tuyˆn t´ . . . . . . . . . . . . . 237 ´ ınh e ınh 14.1.4 Phu.o.ng tr` Bernoulli . . . . . . . . . . . . . . 244 ınh .o.ng tr` vi phˆn to`n phˆn . . . . . . . . 247 ` 14.1.5 Phu ınh a a a 14.1.6 Phu.o.ng tr` Lagrange v` phu.o.ng tr` Clairaut255 ınh a ınh .o.ng tr` vi phˆn cˆp cao . . . . . . . . . . . . . . 259 ´ 14.2 Phu ınh aa .o.ng tr` mang lại ph´p ha thˆp cˆp . . . . 260 ´´ 14.2.1 C´c phu a ınh e .aa 14.2.2 Phu.o.ng tr` vi phˆn tuyˆn t´ cˆp 2 v´.i hˆ ´ ´ ınh a e ınh a oe . ´` sˆ h˘ng . . . . . . . . . . . . . . . . . . . . . . 264 oa 14.2.3 Phu.o.ng tr` vi phˆn tuyˆn t´nh thuˆn nhˆt ´ ` ´ ınh a eı a a cˆp n (ptvptn cˆp n ) v´.i hˆ sˆ h˘ng . . . . . . 273 o eo` ´ ´ .´a a a .o.ng tr` vi phˆn tuyˆn t´ cˆp 1 v´.i hˆ sˆ h˘ng290 ´ o eo` ´ .´a 14.3 Hˆ phu e ınh a e ınh a .15 Kh´i niˆm vˆ phu.o.ng tr` ` a e e ınh vi phˆn d ao h`m riˆng a a e 304 . . 15.1 Phu.o.ng tr` vi phˆn cˆp 1 tuyˆn t´ d ˆi v´.i c´c d ao ´ ´ ´ ınh aa e ınh o o a . H`m riˆng . . . . . . . . . . . . . . . . . . . . . . . . . A e 306 15.2 Giai phu.o.ng tr` d ao h`m riˆng cˆp 2 d o.n gian nhˆt ´ ´ ’ ’ ınh . A e a a 310 15.3 C´c phu.o.ng tr` vˆt l´ to´n co. Ban . . . . . . . . . . ’ a ınh a y a 313 . 15.3.1 Phu.o.ng tr` truyˆn s´ng . . . . . . . . . . . . `o ınh e 314 .o.ng tr` truyˆn nhiˆt . . . . . . . . . . . . ` 15.3.2 Phu ınh e e 317 . .o.ng tr` Laplace . . . . . . . . . . . . . . 15.3.3 Phu ınh 320 ’ T`i liˆu tham khao . . . . . . . . . . . . . . . . . . . . . Ae 327 .Chu.o.ng 10 ´T´ phˆn bˆt dinh ıch a a. 10.1 C´c phu.o.ng ph´p t´ a a ınh t´ phˆn . . . . . . ıch a 4 ´ 10.1.1 Nguyˆn h`m v` t´ phˆn bˆt dinh . . . . . Ea a ıch a a . 4 10.1.2 Phu.o.ng ph´p dˆi biˆn . . . . . . . . . . . . 12 ’´ aoe 10.1.3 Phu.o.ng ph´p t´ phˆn t`.ng phˆn . . . . . 21 ` a ıch a u a 10.2 C´c l´.p h`m kha t´ trong l´.p c´c h`m ’ ıch ao a o a a . Cˆp . . . . . . . . . . . . . . . . . . . . . . 30 ´ so a 10.2.1 T´ phˆn c´c h`m h˜.u ty . . . . . . . . . 30 u’ ıch a a a 10.2.2 T´ phˆn mˆt sˆ h`m vˆ ty do.n gian . . . 37 .´ o’ ’ ıch a ooa 10.2.3 T´ phˆn c´c h`m lu.o.ng gi´c . . . . . . . 48 ıch a a a a . C´c phu.o.ng ph´p t´10.1 a a ınh t´ phˆn ıch a ´10.1.1 Nguyˆn h`m v` t´ phˆn bˆt dinh e a a ıch a a.Dinh ngh˜ 10.1.1. H`m F (x) du.o.c goi l` nguyˆn h`m cua h`m-. ’ ıa a .a e a a . ´ ’ ’ oa ’f (x) trˆn khoang n`o d´ nˆu F (x) liˆn tuc trˆn khoang d´ v` kha vi e a oe e. E10.1. C´c phu.o.ng ph´p t´ t´ phˆn a a ınh ıch a 5 ˜ ’ ’ ’tai mˆ i diˆm trong cua vùng v` F (x) = f (x). Oe a .Dinh l´ 10.1.1. (vˆ su. Tˆn tai nguyˆn h`m) Moi h`m liˆn tuc trˆn-. `.` . Y e o ea .a e. Edoan d` u c´ nguyˆn h`m trˆn vùng (a, b). ’ ˆo e ea e .-. ´ ay’ u oaa’Dinh l´ 10.1.2. C´c nguyˆn h`m bˆt k` cua c`ng mˆt h`m l` chı y a ea . .i mˆt h˘ng sˆ cˆng. .` ´. ’ oa ookh´c nhau bo a Kh´c v´.i dao h`m, nguyˆn h`m cua h`m so. Cˆp khˆng phai bao ´ ’ ’ ao.a ea a a ogi`. C˜ng l` h`m so. Cˆp. Ch˘ng han, nguyˆn h`m cua c´c h`m e−x , 2 ’ ´ ’aa ou aa a a ea . 1 cos x sin x ,... L` nh˜.ng h`m khˆng so. Cˆp.cos(x2), sin(x2), ´ , , au a o a lnx x xDinh ngh˜ 10.1.2. Tˆp ho.p moi nguyˆn h`m cua h`m f (x) trˆn-. ’ ıa a ea a e . . . .o.c goi l` t´ phˆn bˆt dinh cua h`m f (x) trˆn khoang ´ ’ ’a ’khoang (a, b) du . . A ıch a a . E(a, b) v` du.o.c k´ hiˆu l` a .yea . F (x)dx. ´ ’a ’ Nˆu F (x) l` mˆt vào c´c nguyˆn h`m cua h`m f (x) trˆn khoang e ao a ea e .(a, b) th` theo dinh l´ 10.1.2 ı y . C∈R f (x)dx = F (x) + C,trong vày C l` h˘ng sˆ t`y y v` d˘ng th´.c cˆn hiˆu l` d˘ng th´.c gi˜.a ’ ’ ’ a` u` ´ ´ a ou´aa a e aa u uhai tˆp ho.p. A . . C´c t´ chˆt co. Ban cua t´ phˆn bˆt dinh: ´ ´ ’ ’ ıch a a . A ınh a 1) d f (x)dx = f (x)dx. 2) f (x)dx = f (x). 3) df (x) = f (x)dx = f (x) + C . T`. Dinh ngh˜ t´ phˆn bˆt dinh r´t ra bang c´c t´ch phˆn co. ´ ’ u. ıa ıch a a. U aı aban (thu.`.ng du.o.c goi l` t´ phˆn bang) sau dˆy: ’ ’ o . A ıch a a . Chu.o.ng 10. T´ phˆn bˆt d . Nh ´6 ıch a a i I. 0.dx = C . II. 1dx = x + C . Xα+1 xαdx = III. + C , α = −1 α+1 dx IV. = ln|x| + C , x = 0. X ax axdx = ex dx = ex + C . V. + C (0 1). ´ o a uı a . . 1 1+x dx XIII. = ln + C , |x| = 1. 2 1−x 2 1−x ´ ınh ıch a a .´ C´c quy t˘c t´ t´ phˆn bˆt dinh: a a10.1. C´c phu.o.ng ph´p t´ t´ phˆn a a ınh ıch a 7 1) k f (x)dx = k f (x)dx, k = 0. 2) dx = f (x)dx ± g (x)dx. ´ ’ 3) Nˆu e f (x)dx = F (x) + C v` u = ϕ(x) kha vi liˆn tuc th` a e. ı f (u)du = F (u) + C . CAC V´ DU ´ I .V´ du 1. Ch´.ng minh r˘ng h`m y = signx c´ nguyˆn h`m trˆn ` ı. U a a o e a e .a diˆm x = 0 v` khˆng c´ nguyˆn h`m trˆn ’ ´ ’khoang bˆt k` khˆng ch´ ayo u e ao o ea emoi khoang ch´.a diˆm x = 0. ’ ’ u e . Giai. 1) Trˆn khoang bˆt k` khˆng ch´.a diˆm x = 0 h`m y = signx ’ ´ ’ ’ e ayo u e a .i moi vùng (a, b), 0 0 mˆt o a o e o .trong c´c nguyˆn h`m l` ex . Khi x Chu.o.ng 10. T´ phˆn bˆt d . Nh ´8 ıch a a i ` ’ ’ phai quẹt m˜n diˆu kiˆn a e e . Lim ex = lim (−e−x + C ) x→0+0 x→0−0 t´.c l` 1 = −1 + C ⇒ C = 2. Ua Nhu. Vˆy a .  ex  ´ nˆu x > 0, e   ´ F (x) = 1 nˆu x = 0, e    −x −e + 2 nˆu x 0 ta c´ |x| ´ ’ h`m cua h`m e trˆn to`n truc sˆ. Thˆt vˆy, v´ a a e a .o aa o o . . F (x) = ex = e|x|, v´.i x 10.1. C´c phu.o.ng ph´p t´ t´ phˆn a a ınh ıch a 9V´ du 4. T´ c´c t´ phˆn sau dˆy: ı. ınh a ıch a a 2x+1 − 5x−1 2x + 3 1) dx, 2) dx. 10x 3x + 2 ’ Giai. 1) Ta c´ o 2x 5x 1 11 x x I= 2− dx = 2 − dx x x 10 5 · 10 5 52 1 1x 1x =2 dx − dx 5 5 2 1x 1x 12 =2 5 − +C 1 1 5 ln ln 5 2 2 1 =− x + + C. 5 ln5 5 · 2x ln2 2) 3 2 5 2 x+ x+ + 2 dx = 2 3 6 dx I= 2 2 3 3 x+ x+ 3 3 2 5 2 = x + ln x + + C. 3 9 3V´ du 5. T´ c´c t´ phˆn sau dˆy: ı. ınh a ıch a a √ 1 + cos2 x tg2 xdx,1) 2) dx, 3) 1 − sin 2xdx. 1 + cos 2x ’ Giai. 1) sin2 x 1 − cos2 x 2 tg xdx = dx = dx cos2 x cos2 x dx = − dx = tgx − x + C. Cos2 x Chu.o.ng 10. T´ phˆn bˆt d . Nh ´10 ıch a a i 2) 1 + cos2 x 1 + cos2 x 1 dx dx = dx = + dx 2x cos2 x 1 + cos 2x 2 cos 2 1 = (tgx + x) + C. 2 3) √ sin2 x − 2 sin x cos x + cos2 xdx 1 − sin 2xdx = (sin x − cos x)2dx = = | sin x − cos x|dx = (sin x + cos x)sign(cos x − sin x) + C. ` ˆ BAI TAP . B˘ng c´c ph´p biˆn dˆi d` ng nhˆt, h˜y du.a c´c t´ch phˆn d˜ cho ’o ` ´ ´a a a e e oˆ a aı aa vˆ t´ phˆn bang v` t´ c´c t´ch phˆn d´1 ` ıch a ’ e a ınh a ı ao 1 x−1 1 dx 1. . (DS. Ln − arctgx) x4 − 1 4 x+1 2 1 + 2x2 1 2. Dx. (DS. Arctgx − ) x2 (1 + x2 ) x √ √ √ x2 + 1 + 1 − x2 (DS. Arc sin x + ln|x + 1 + x2|) √ 3. Dx. 1 − x4 √ √ √ √ x2 + 1 − 1 − x2 dx. (DS. Ln|x + x2 − 1| − ln|x + x2 + 1|) √ 4. X4 − 1 √ x4 + x−4 + 2 1 5. Dx. (DS. Ln|x| − 4 ) 3 x 4x 23x − 1 e2x + ex + 1) 6. Dx. (DS. Ex − 1 2 Dˆ cho gon, vào c´c “D´p sˆ” cua chu.o.ng n`y ch´ng tˆi bo qua khˆng viˆt 1’ ´ ´ ao’ o’ e a a u o e . `ng sˆ cˆng C . ´. C´c h˘ aa oo10.1. C´c phu.o.ng ph´p t´ t´ phˆn a a ınh ıch a 11 3x 22x − 1 2 22 x + 2− 2 ) √7. Dx. (DS. Ln2 3 2x dx 1 lnx (DS. √ arctg √ )8. . X(2 + ln2 x) 2 2 √ 3 ln2 x 3 5/39. Dx. (DS. Ln x) x 5 ex + e2x (DS. −ex − 2ln|ex − 1|)10. Dx. 1 − ex ex dx (DS. Ln(1 + ex))11. . 1 + ex x 1 sin x sin2 dx.12. (DS. X− ) 2 2 2 cotg2 xdx.13. (DS. −x − cotgx) √ π14. 1 + sin 2xdx, x ∈ 0, . (DS. − cos x + sin x) 2 ecos x sin xdx. (DS. −ecos x )15. Ex cos ex dx. (DS. Sin ex)16. X 117. Dx. (DS. Tg ) 1 + cos x 2 dx 1 xπ (DS. √ ln tg18. . + ) sin x + cos x 2 8 2 1 + cos x 219. Dx. (DS. − ) (x + sin x)3 2(x + sin x)2 sin 2x 1 1 − 4 sin2 x)20. Dx. (DS. − 2 2 1 − 4 sin x √ sin x 1 + cos2 x|)21. Dx. (DS. −ln| cos x + 2 2 − sin x Chu.o.ng 10. T´ phˆn bˆt d . Nh ´12 ıch a a i sin2 x 1 sin x cos x (DS. Arc sin √ 22. Dx. ) 2 3 − sin4 x 3 arccotg3x 1 (DS. − arccotg2 3x) 23. Dx. 2 1 + 9x 6 √ x + arctg2x 1 1 (DS. Ln(1 + 4x2) + arctg3/22x) 24. Dx. 1 + 4x2 8 3 1 arc sin x − arc cos x (arc sin2 x + arc cos2 x)) √ 25. Dx. (DS. 2 1 − x2 x + arc sin3 2x 1√ 1 1 − 4x2 + arc sin4 2x) √ 26. Dx. (DS. − 4 8 1 − 4x2 √ x + arc cos3/2 x 2 (DS. − 1 − x2 − arc cos5/2 x) √ 27. Dx. 5 1 − x2 |x|3 28. X|x|dx. (DS. ) 3 29. (2x − 3)|x − 2|dx.  − 2 x3 + 7 x2 − 6x + C, x 1.  3 x − x + C  ´ nˆu |x| e 1 3 (DS. F (x) = ) x − x|x| + 1 signx + C  ´ nˆu|x| > 1 e 2 6 Phu.o.ng ph´p dˆi biˆn ’ ´ 10.1.2 a o e Dinh l´. Gia su.: -. ’’ y10.1. C´c phu.o.ng ph´p t´ t´ phˆn a a ınh ıch a 13 1) H`m x = ϕ(t) x´c d. Nh v` kha vi trˆn vùng T v´.i tˆp ho.p gi´ a’ ’ a ai e oa . A . ’tri l` khoang X . .a ’ 2) H`m y = f (x) x´c d. Nh v` c´ nguyˆn h`m F (x) trˆn vùng X . A ai ao ea e ’ lúc d´ h`m F (ϕ(t)) l` nguyˆn h`m cua h`m f (ϕ(t))ϕ (t) trˆn oa a e a a e ’khoang T . T`. D.nh l´ 10.1.1 suy r˘ng ` ui y a f (ϕ(t))ϕ (t)dt = F (ϕ(t)) + C. (10.1) V` ı F (ϕ(t)) + C = (F (x) + C ) = f (x)dx x=ϕ(t) x=ϕ(t)cho nˆn d˘ng th´.c (10.1) c´ thˆ viˆt du.´.i dang ’ ’´ ea u oee o. F (x)dx = f (ϕ(t))ϕ (t)dt. (10.2) x=ϕ(t) D˘ng th´.c (10.2) du.o.c goi l` cˆng th´.c dˆi biˆn trong t´ phˆn ’ ’´ a u .ao uoe ıch a . ´bˆt dinh. A. Nˆu h`m x = ϕ(t) c´ h`m ngu.o.c t = ϕ−1 (x) th` t`. (10.2) thu ´ ea oa ıu . .o.cdu . F (x)dx = f (ϕ(t))ϕ (t)dt . (10.3) t=ϕ−1 (x) ’´ o a ı.` e o e Ta nˆu mˆt v`i v´ du vˆ ph´p dˆi biˆn. E e . √ i) Nˆu biˆu th´.c du.´.i dˆu t´ phˆn c´ ch´.a c˘n a2 − x2, a > 0 ’ ´ ´ e e u o a ıch a o u a ππth` su. Dung ph´p dˆi biˆn x = a sin t, t ∈ − , ’´ ı’ . Eoe . 22 √ ii) Nˆu biˆu th´.c du.´.i dˆu t´ phˆn c´ ch´.a c˘n x2 − a2, a > 0 ’ ´ ´ e e u o a ıch a o u a a π ’´th` d`ng ph´p dˆi biˆn x = ıu eoe , 0 0 ´ ´ iii) Nˆu h`m du o a ıch a ea ua u ππ ’.th` c´ thˆ d˘t x = atgt, t ∈ − , ıo ea ho˘c x = asht. A . 22 .´.i dˆu t´ phˆn l` f (x) = R(ex , e2x, . . . .enx ) th` ´ ´ iv) Nˆu h`m du o a ıch a a ea ıc´ thˆ d˘t t = ex (o. Dˆy R l` h`m h˜.u ty). ’. ’a u’ o ea aa Chu.o.ng 10. T´ phˆn bˆt d . Nh ´14 ıch a a i CAC V´ DU ´ I . Dx V´ du 1. T´ ı. ınh . Cos x ’ Giai. Ta c´ o dx cos xdx = (d˘t t = sin x, dt = cos xdx) a . 1 − sin2 x cos x 1 1+t xπ dt = ln + C = ln tg + + C. = 1 − t2 2 1−t 2 4 x3 dx V´ du 2. T´ I = ı. ınh . X8 − 2 ’ Giai. Ta c´ o √ 2 x4 1 d√ d(x4 ) 4 2 4 I= = x4 x8 − 2 2 −2 1 − √ 2 x4 D˘t t = √ ta thu du.o.c a . . 2 √ √ 2 + x4 2 ln √ I=− + C. 8 2 − x4 x2 dx V´ du 3. T´ I = ı. ınh · (x2 + a2 )3 adt ’ Giai. D˘t x(t) = atgt ⇒ dx = a . Do d´ o . Cos2 t sin2 t a3tg2t · cos3 tdt dt I= = dt = − cos tdt a3 cos2 t cos t cos t tπ = ln tg + − sin t + C. 24 x V` t = arctg nˆn ı e a 1 xπ x I = ln tg arctg + − sin arctg +C 2 a4 a √ x + ln|x + x2 + a2| + C. = −√ x2 + a210.1. C´c phu.o.ng ph´p t´ t´ phˆn a a ınh ıch a 15 e ˜a ´`Thˆt vˆy, v` sin α = cos α · tgα nˆn dˆ d`ng thˆy r˘ng aa ı e aa .. X x =√ sin arctg · a 2 + a2 x ´ Tiˆp theo ta c´ e o 1 xπ xπ x sin arctg + 1 − cos arctg + 1 + sin arctg 2 a4 a2 a = = xπ x 1 xπ sin arctg + − cos arctg cos arctg + a2 a 2 a4 √ x + a2 + x2 = av` t`. Vị suy ra diˆu phai ch´.ng minh. ` ’ au ´ e u √ a2 + x2 dx.V´ du 4. T´ I = ı. ınh ’ Giai. D˘t x = asht. Khi d´ a o . A2 (1 + sh2 t)achtdt = a2 ch2 tdt I= a2 1 ch2t + 1 = a2 dt = sh2t + t + C 2 22 a2 = (sht · cht + t) + C. 2 √ x2 t a2 + x2 x+ 2V` cht = ı 1 + sh t = 1 + 2 . E = sht + cht = nˆn e a a √ x + a2 + x2t = ln v` vì chưng d´ a o a x√ 2 √ √ a2 a2 + x2 dx = a + x2 + ln|x + a2 + x2| + C. 2 2V´ du 5. T´ ı. ınh x2 + 1 3x + 4 √ √ 1) I1 = dx, 2) I2 = dx. X6 − 7x4 + x2 −x2 + 6x − 8 Chu.o.ng 10. T´ phˆn bˆt d . Nh ´16 ıch a a i ’ Giai. 1) Ta c´ o 1 1 1+ d x− dt x2 x √ I1 = dx = = t2 − 5 1 1 2 x2 − 7 + x− −5 x2 x √ 1 1 t2 − 5| + C = ln x − + x2 − 7 + 2 + C. = ln|t + x x 2) Ta viˆt biˆu th´.c du.´.i dˆu t´ phˆn du.´.i dang ’ ´e ´ e u o a ıch a o. 3 −2x + 6 1 f (x) = − · √ + 13 · √ 2 −x2 + 6x − 8 −x2 + 6x − 8 v` thu du.o.c a . I2 = f (x)dx 3 d(x − 3) 1 (−x2 + 6x − 8)− 2 d(−x2 + 6x − 8) + 13 =− 2 1 − (x − 3)2 √ = −3 −x2 + 6x − 8 + 13 arc sin(x − 3) + C. V´ du 6. T´ ı. ınh sin x cos3 x dx 1) , 2) I2 = dx. 1 + cos2 x sin x ’ Giai 1) C´ch I. Ta c´ a o dx sin x d(cos x) 1 1 − cos x = dx = = ln + C. Sin2 x cos2 x − 1 sin x 2 1 + cos x C´ch II. A x x d d dx 2 2 = x= x x x sin x tg · cos2 sin cos 2 2 2 2 x d tg x 2 x = ln tg 2 + C. = tg 210.1. C´c phu.o.ng ph´p t´ t´ phˆn a a ınh ıch a 17 2) Ta c´ o sin x cos x<(cos2 x + 1) − 1> I2 = dx. 1 + cos2 x Ta d˘t t = 1 + cos2 x. T`. D´ dt = −2 cos x sin xdx. Vì chưng d´ a uo o . 1 t t−1 I2 = − dt = − + ln|t| + C, 2 t 2trong d´ t = 1 + cos2 x. OV´ du 7. T´ ı. ınh exdx ex + 1 √ 1) I1 = , 2) I2 = dx. Ex − 1 e2x + 5 ’ Giai 1) D˘t ex = t. Ta c´ ex dx = dt v` a o a . √ √ dt = ln|t + t2 + 5| + C = ln |ex + e2x + 5| + C. √ I1 = t2 + 5 dt 2) Tu.o.ng tu., d˘t ex = t, exdx = dt, dx = v` thu du.o.c .a a . . T t + 1 dt 2dt dt I2 = = − = 2ln|t − 1| − ln|t| + C t−1 t t−1 t = 2ln|ex − 1| − lnex + c = ln(ex − 1)2 − x + C. ` ˆ BAI TAP . T´ c´c t´ phˆn: ınh a ıch a e2x 4 (3ex − 4) 4 (ex + 1)3 ) √1. Dx. (DS. 4 21 x+1 e ’˜ Chı dˆ n. D˘t ex + 1 = t4. A a . Chu.o.ng 10. T´ phˆn bˆt d . Nh ´18 ıch a a i √ 1 + ex − 1 dx √ (DS. Ln √ 2. . ) ex + 1 1 + ex + 1 e2x (DS. Ex + ln|ex − 1|) 3. Dx. Ex − 1 √ 1 + lnx 2 (1 + lnx)3) 4. Dx. (DS. X 3 √ 1 + lnx 5. Dx. Xlnx √ √ (DS. 2 1 + lnx − ln|lnx| + 2ln| 1 + lnx − 1|) dx x x (DS. −x − 2e− 2 + 2ln(1 + e 2 )) 6. . Ex/2 x +e √ √ arctg x dx (DS. (arctg x)2) √ 7. . X 1+x √ 2 (DS. (ex + 1)3/2 ) e3x + e2xdx. 8. 3 1 2x2+2x−1 2 +2x−1 e2x 9. (2x + 1)dx. (DS. E ) 2 √ dx (DS. 2arctg ex − 1) √ 10. . Ex − 1 √ e2xdx 1 ln(e2x + e4x + 1)) √ 11. . (DS. 2 e4x + 1 2x dx arc sin 2x √ 12. . (DS. ) ln2 1 − 4x √ √ dx √ 13. . (DS. 2< x + 1 − ln(1 + x + 1)>) 1+ x+1 ’˜ Chı dˆ n. D˘t x + 1 = t2. A a . √ √ x−2 x+1 √ 14. Dx. (DS. 2 x − 2 + 2arctg ) 2 x x−2 2√ √ dx √ 15. . (DS. Ax + b − mln| ax + b + m| ) a ax + b + m10.1. C´c phu.o.ng ph´p t´ t´ phˆn a a ınh ıch a 19 √ √ dx √√16. . (DS. 3 3 x + 3ln| 3 x − 1|) x( x − 1) 3 3 dx17. . (DS. Tg(arc sin x)) (1 − x2)3/2 ππ ’˜ Chı dˆ n. D˘t x = sin t, t ∈ a a − , ) . 22 1 x dx18. . (DS.sin arctg ) (x2 + a2)3/2 2 a a ππ ˜ ’a Chı dˆ n. D˘t x = atgt, t ∈ − , a . . 22 dx 1 119. . (DS. − , t = arc sin ) (x2 − 1)3/2 cos t x 1 π π ’˜ Chı dˆ n. D˘t x = a a , −